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Idea

Find a star product on a smooth manifold M by following this recipe:

• Find a symmetry g of M.

• Quantize the Hopf algebra U g corresponding to the symmetry.

• Induce a star product and a noncommutative Cartan calculus on M by the
quantization of U g.

→ Drinfel’d twist deformation quantization
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Drinfel’d twist deformation quantization (I)

Let k = R or C.

Definition (Star product)

A star product on a Poisson manifold (M, {·, ·}) is a k[[ h]]-bilinear associative binary opera-
tion ? on C ∞(M)[[ h]] of the form

f ? g =

∞∑
k=0

 hkBk(f,g) , ∀ f,g ∈ C ∞(M),

where Bk : C ∞(M)× C ∞(M)→ C ∞(M) are bidifferential operators,

B0(f,g) = fg , B1(f,g) − B1(g, f) = i {f,g} ,

and
f ? 1 = 1 ? f = f.

The algebra (C ∞(M)[[ h]], ?) is called a deformation quantization of (M, {·, ·}).

1 / 10
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Drinfel’d twist deformation quantization (II)
A Lie algebra g is a symmetry of a smooth manifold M if

∃ g→ X1(M) Lie algebra map.

Or in other words, if there is a left U g-module algebra action

B : U (g)⊗ C∞(M)→ C∞(M)

on C∞(M).

Definition (Drinfel’d twist)
F ∈ U (g)⊗2[[ h]] is a (Drinfel’d) twist, if the following three properties hold:

i.) (F ⊗ 1) · (∆⊗ id)(F) = (1⊗ F) · (id⊗ ∆)(F), (2-cocylce condition)

ii.) (ε⊗ id)(F) = 1 = (id⊗ ε)(F), (normalization property)

iii.) F = 1⊗ 1+ O( h).

2 / 10
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Drinfel’d twist deformation quantization (III)
Proposition
Let F ∈ U (g)⊗2[[ h]] be a twist.

Then the twisted Hopf algebra

U gF = (U(g)[[ h]],∆F, ε,SF)

is a (topologically free) Hopf algebra, where ∆F = F∆F−1 and SF = βSβ−1, with

β = F1S(F2). Typically U gF is noncocommutative.

If g is a symmetry of a smooth manifold M, then the twisted algebra

C∞(M)F = (C∞(M)[[ h]], ?F)

of smooth functions is a left U gF-module algebra, where

f ?F g = (F−1
1 B f)(F

−1
2 B g),

for all f,g ∈ C∞(M).

3 / 10
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Drinfel’d twist deformation quantization (IV)
Definition (Twist star product)
A star product ? on a Poisson manifold (M, {·, ·}) is called twist star product if
there is a symmetry g of M and a twist F ∈ U (g)⊗2[[ h]] such that

? = ?F.

Example
Consider M = R2 with coordinates (x,y) and the standard Poisson bracket. The
Moyal-Weyl star product

f ? g = m(exp(i h∂x ∧ ∂y)(f⊗ g))

on R2 is a twist star product ? = ?F with inducing twist given by

F = exp(−i h∂x ∧ ∂y).

The corresponding symmetry is (TR2, [·, ·] = 0) acting by the Lie derivative L .

4 / 10
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Drinfel’d twist deformation quantization (V)
Similarly one can define the twisted Graßmann algebra

Ω•(M)F = (Ω•(M)[[ h]],∧F)

of differential forms.

The twisted wedge product ∧F is given by

α∧F ω = (F−1
1 B α)∧ (F−1

2 Bω).

Ω•(M)F is a U gF-equivariant C∞(M)F-bimodule with respect to the twisted

module action
f •F ω = (F−1

1 B f)(F
−1
2 Bω).

Furthermore one can define a twisted Cartan calculus on M (see Aschieri,

Schenkel, Schupp, Wess, et al.) opening up the stage to noncommutative

differential geometry.

Problem: Twist star products are not compatible with many symplectic manifolds!

Goal of the talk: Find obstructions for twist star products in the symplectic case!

5 / 10
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2. Obstructions for symplectic Riemann surfaces
Consider a star product ? on a Poisson manifold (M, {·, ·}).

Lemma
Let F = 1⊗ 1+

 h
2 r
′ + O( h2) ∈ U (g)⊗2[[ h]] be a twist.

i.) Then r = r ′21 − r
′ ∈ Λ2g is a classical r-matrix, i.e. CYB(r) = 0.

ii.) If ? = ?F, then {f,g} = m(rB (f⊗ g)) for all f,g ∈ C∞(M).

iii.) If (M, {·, ·}) is symplectic, connected, compact and there exists a twist star
product on (M, {·, ·}), then M is a homogeneous space.

Theorem (Bieliavsky-Esposito-Waldmann-TW, 2016)
There are no twist star products

i.) on the symplectic Riemann surfaces of genus > 1.

ii.) on the symplectic 2-sphere.
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2. Obstructions for symplectic Riemann surfaces
Theorem
There are no twist star products

i.) on the symplectic Riemann surfaces of genus > 1.

ii.) on the symplectic 2-sphere.

Sketch of the proof.

i.) Riemann surfaces are connected and compact but not homogeneous for
genus > 1.

ii.) Assume the existence of a twist star product on symplectic S2.

1 We can further assume that r ∈ Λ2g is non-degenerate.

2 All transitive Lie group actions on S2 (up to equivalence) are by semisimple Lie
groups (see Onishchik 1967).

3 There are no non-degenerate r-matrices on semisimple Lie algebras.
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3. Obstructions via Morita equivalence (I)
Consider a smooth complex line bundle L→M.

⇒ Γ∞(L) is a C∞(M)-Morita equivalence bimodule, i.e. it is a finitely generated

projective C∞(M)-bimodule together with an algebra isomorphism

C∞(M)→ EndC∞(M)(Γ
∞(L)).

Theorem (Bursztyn-Waldmann, 2002)
Let ? be star product on a symplectic manifold (M, {·, ·}) and L→M a smooth
complex line bundle. Then, there is a star product ? ′ on (M, {·, ·}) such that

(C∞(M)[[ h]], ? ′)→ End(C∞(M)[[ h]],?)(Γ
∞(L)[[ h]], •)

is an isomorphism of C[[ h]]-algebras.

Moreover, ? ∼ ? ′ if and only if c1(L) = 0.
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Two star products ?, ? ′ on a symplectic manifold (M, {·, ·}) are Morita equivalent if
there is L such that (1) is an isomorphism of C[[ h]]-algebras.

Remark
This coincides with the ring-theoretic definition of Morita equivalence on star
product algebras.
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3. Obstructions via Morita equivalence (II)

Theorem (D’Andrea-TW, 2017)
Let (M, {·, ·}) be a symplectic manifold, which is a homogeneous G-space.
Mutually exclusive are:

i.) There is a G-equivariant L→M with c1(L) 6= 0.

ii.) There is a twist star product on (M, {·, ·}) based on U(g)[[ h]], where
Lie(G) = g.

Corollary

There are no twist star products on symplectic CPn−1 based on U (gln(C))[[ h]]
or any sub-bialgebra.

Proof of Corollary.

The tautological line bundle on CPn−1 has non-trivial Chern class and is
GLn(C)-equivariant. �
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3. Obstructions via Morita equivalence (III)
Theorem (D’Andrea-TW, 2017)
(M, {·, ·}) symplectic manifold, which is a homogeneous G-space. Mutually exclusive are:

i.) There is a G-equivariant L→M with c1(L) 6= 0.

ii.) There is a twist star product on (M, {·, ·}) based on U(g)[[ h]], where Lie(G) = g.

Sketch of the proof.

1 If L→M is G-equivariant⇒ Γ∞(L) is U (g)-equivariant.

2 If also ∃ F on U (g)[[ h]]⇒ Γ∞(L)[[ h]] is U gF-equivariant C ∞(M)F-bimodule with

λF(f⊗ s) = (F−1
1 B f)(F

−1
2 B s),

where f ∈ C ∞(M) and s ∈ Γ∞(L).

3 λF : C ∞(M)F → EndC∞(M)F (Γ
∞(L)[[ h]], •F) is an isomorphism of C[[ h]]-algebras.

4 ⇒ there is an algebra isomorphism C ∞(M)F ∼= (C ∞(M)[[ h]], ? ′), i.e. ⇒ c1(L) = 0.
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Open questions

• Are there more (general) obstructions for twist star products on symplectic
manifolds?

• Are there obstructions for (non-symplectic) Poisson manifolds?

• Is there a classification of twist star products?
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Thank you for your attention!


